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ABSTRACT

The world of vehicle design is a fast-paced iterative environment that demands efficiency in the simulation of
suspensionloads. Towardthatend, a computationally efficient, linear, planar, quasi-static tire modelis developed in
this work that accurately predicts a tire’s lower-frequency, reasonably large amplitude, nonlinear stiffness relationship.
Hamilton’s principle is used to derive the axisymmetric and circumferentially isotropic stiffness equation which is
discretized into segments to createthetire stiffness model. The modelis parameterized by a single stiffness paraneter
and two shape parameters such that the tire’s deformed shape is completely independent of the overall tire stiffness
and the forces acting on the tire. Constraint modes are developed that capture the tire enveloping and bridging
properties via component mode synthesis originated by Hurty and Gladwell and the Guyan static reduction method
decouples active constraints fromthe stiffness matrix formulation. A recursivemethod is developed to deduce theset
of active constraints at the tire-road interface. The model captures the nonlinear stiffness ofareal tire by enforcing
the unidirectional geometric boundary conditions during the recursive method. The modelparameters are identified
via two quasi-static experiments: a flat-plate and a cleat test. The simulated vertical loads are within 4% of the
experimental load throughouta reasonably large range oftravel for the flat-plate testand within 7% ofthe experimental
loads for the cleat test. The simulation produces nonlinear stiffness when simulating a flat plate test and a
discontinuous stiffness when simulating a cleat test. This model strikes a balance between simple tire models that
lack the fidelity to make accurate chassis load predictions and computationally intensive models that cannot provide
timely predictions. It is expected that this tire model is used as an integral part of computationally efficient and
accurate vehicle simulations that are critical throughout the fast-paced iterative design process.
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DISCLAIMER

Reference herein to any specific commercial company, product, process, or service by trade name, trademark,
manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by
the United States Governmentorthe Departmentofthe Army (DoA). The opinions ofthe authors expressed herein do
notnecessarily state orreflect those ofthe United States Governmentorthe DoA, and shallnotbe used for advertising
or product endorsement purposes.

NOMENCLATURE
N Totalnumberoftire segments
u Setofradialdeflections
R  Tire radius
F, Radial force acting on n” tire segment

F* Setofactive radialtire force
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F Vertical spindle force
f  Linearly distributed load density
Kk Radial stiffness density

E  Elasticmodulus

I Second moment of inertia

G Shearmodulus

A

Cross-sectional area

U, Distributedbending potential energy

U, Distributed shear potential energy

U, Distributedradial elastic potential energy
Distributed external work

¥, Distributedbending stiffness

ys Distributed shear stiffness

¥, Distributedradial stiffness

k, Modelstiffness parameter

a;a, Modelshapeparameters

INTRODUCTION

With the advent of autonomous vehicles and the simultaneous pressure to improve energy efficiency, there are ever
increasingdemands on vehicle engineers. In particular, chassis engineers are faced with numerous design challenges
(weight, cost, ride, handling, noise, reliability, packaging...) while interacting with several influential groups
(scientific labs, proving ground, suppliers, safety, manufacturing, powertrain, body... ) that result in a highly iterative
design process. All these challenges and groups must be satisfied, to the best ofthe engineer’s ability, within a very
short timeframe. This fast-paced iterative design environment demands efficiency. Yet some fundamental physical
truths remain within this cacophony of ever-changing requirements, influential groups, and deadlines. Forexample,
regardless of how the power is developed, or how the wheels are steered, all the vehicle forces must ultimately be
reacted through the vehicle suspension and tires.

The goal then, is to create a highly efficient model that captures the fundamental physical properties of tires from
which simulation results are used to make informed design decisions. High fidelity, but computationally intensive
models that provide very accurate information after the parts have been released for production are of no use.
Simulation results arising fromoverly simplified models thatlack the fidelity to make accurate chassis load predictions
cannot be trusted and have little value. The objective of this work is to develop a computationally efficient, planar
tire model that accurately predicts the lower-frequency, but not necessarily low amplitude, tire shape. Higher-
frequency dynamics such as those that would be required fornoise predictions are outsidethescope ofthis work. The
emphasis is intentionally placed on the shape ofthe deformed tire in the region of the contact patch, which must be
capable ofrepresenting the bridging property (over narrow cracks) and enveloping property (over sharpbumps). The
scope includes relatively large deformations, approaching, but not including, the point of rim strike. Although the
relationship between the radial deformation and radialload is developed as a linear quasi-static model, the nonlinear
stiffness relationship between the vertical spindle load and the vertical tire deflection that exists in real tires is captured
by the model via the unidirectional geometric boundary condition at the tire-road interface. Six physicaltire properties
(radius, bending stiffness...) are reduced in the development of this model to a single stiffness parameter and two
shape parameters. Experimental data are used to validate the approach using two quasi-static tests, a flat plate and a
cleat test, with relatively large deformations.

The remainder of this work is developed as follows. Some background on finite element and finite difference tire
modeling and the use of constraint modes in tire modeling is briefly reviewed. The mathematical derivation of the
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parameterization ofthe stiffness matrix is developed followed by the development ofthe constraint mode model for
this work. A recursive process to determine the proper tire shape is developed followed by validation with quast
static experimental results. Theresultingmodel is capable ofbridging and enveloping irregularities in the road surface,
generating the correct tire shape over irregular surfaces, and capturing the nonlinear stiffness relationship produced
by physicaltires.

BACKGROUND

One long-standing hurdle to accurately predicting responses (forces, torques, and accelerations) at the tire spindle i
the development of high fidelity tire models. A considerable amount of tire modeling research has been conducted
and a comprehensive review ofthe current state ofthe art is presented by Willumeit and Boehm[1] and more recently
by Umsrithong [2]. Although a complete review of recent developments is not presented herein, the results from
several ofthese works havedirect relevance to the objectives ofthis study.

Researchers using Finite Element (FE) models have demonstrated thatspindle responses can be predicted accurately,
but may be computationally intensiveand require a great number of physical parameters thatare difficult or costly to

obtain. Mousseau and Hulbert [3]and Darnell, Hulbert, and Mousseau [4] developed a 3-D tire modelusing an FE
model for the tread and a lookup table forthe sidewallmembrane elements. Hanley, Crolla, and Hauke [5],used a 1-
D FE model for tires traversing large obstacles; a more computationally efficient means to simulate relatively large

deflections is pursued in the present study. Burke and Olatunbosun [6] used an FE model and a contact patch
description to predict vertical force and displacement. Presently a more formalapproachto defining the contactpatch
is developed through the definition ofthe active constraints between the tire and road surfaces. The current state of
FE modeling work is presented by Ragheb, El-Gindy, and Kishawy [7] wherein Mooney-Rivlin material properties
were used to create detailed FE models of the tread and tire. Their quasi-static flat-plate test results are used as a
baseline to validate the capability ofthe work developed in the presentstudy.

Otherresearchers have developed ring models oftires using finite differences. Van OostenandJansen [8] used a rigid
ring to calculate belt vibrations while the deformed shape ofthe tire (including bridging and enveloping) was
accurately predicted by Zegelaar and Pacejka by using a flexible ring to simulate the quasi-static response of a tire
rolling over an uneven surface [9]. Although the simulation results agreed with the experimental data, the model s
computationally intensive and requires comprehensive physical testing to define the parameters. A similar approach
was developed by Loo, who modeled thetire by using a more complexflexible circular ring under tension with a nest
oflinear springs and dampers arranged radially [10]. Howeverin Loo’s study thering tension and foundation stiffhess
requires additional contact patch measurements and the parameters were experimentally identified using multiple
single-point load tests. Badalamentiet al. showed that a radial spring tire model, in which the radial spring element
deflection depends on the adjacent element deflections, could accurately describe the tire enveloping behavior in an
efficient model[11]. Presently, a planar ring model with an elastic foundation thatincludes shear and bending stiffhess
in ring is developed to accurately and efficiently describe the tire enveloping behavior.

Itis assumed in this work that the low-frequency deformation ofthetire shape canbe adequately defined by the quasi-
static constraintmodes. This assumptionis givencredence by Gillespie’s study in which a radial spring model is used
to simulate the stiffness variation circumferentially and the magnitude of the radial force variation is found to be
relatively independent of speed [12]. Similarly, Takayama et al. developed amodelto predict the transient response
ofa tire encountering a cleat, where the belt and tread region is modeled by a rigid ring and deflections fromthe cleat
are absorbed bya linearand planar springattached to therigid ring [13].

Ferris suggests that a static constraint mode tire model can be used to capture the tire enveloping and bridging
properties with an axisymmetric and circumferentially isotropic model[14]. This reduced representation of the tire
model is founded on the seminal component mode synthesis work originated by Hurty [15] and Gladwell [16].
Presently, in Equations (15)-(18), the order ofthe stiffness matrix is reduced via a Guyan static reduction [17]. This
constraint mode tire model was expanded by Ma to include shear effects in the derivation and to reduce the required
number of parameters fromfive dependent parameters to two parameters thatdefinethe constraintmodes (the shape)
and an independent parameter that defines the overall tire stiffness [18]. Presently, these concepts are combined to
develop a complete formulation ofthe planar constraint mode tire model.
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MODEL DEVELOPMENT

Consider the tire to be a ring that is inextensible in total circumference, but radially flexible, and supported by an
elastic foundation parameterized by theradial stiffness, x; as shownin Figure 1a. The assumed axisymmetric, planag
and circumferentially isotropic tire is divided into N segments. Each segment is modeled as an Euler elastic beam of

length 2/%/N and notional cross-sectional area, 4, shown as a shadedregionin Figure 1b (the modelitselfis planar).
The vector {u} defines the radial deflection ofall tire segments and the quasi-static constraint modes are developed

from the stiffness relationship givenin Equation (1).

a b

A~ m

N

Figure 1. Schematics of (a) flexible ring with radial stiffness and (b) single tire segment

[K]{u}= {F} (1)

Note that this derivation includes relatively large deformations, approaching, but not including, the point of rims trike
(when the tire sidewallis folded suchthat the upperportion is in direct contact with the lower portion and there is a
discontinuous and dramatic increase in apparent stiffness). Thatis, the radialstiffness ofeach segment is assumed to
be linear. Next the stiffness matrix[K] is developed, followed by a reduced order parameterization of the matrixusing
one stiffness and two shape parameters.

Derivation of the Stiffness Matrix

The quasi-static equation resulting fromtheapplication of Hamilton ’s principle for the distribution of energy and work
throughout thetire is written as Equation (2).
2 @
6U,—6Us,— 46U+ 6U,)dt=0 vt t,
t1
The virtual changes are computedas Equations (3) - (6), where spatial derivatives are represented by the commonly
used prime notation (e.g., first spatial derivative ofradial displacementis u ")

SU, = EIu""8u )
SU, = GAU"6u “4)
8U, = kubu ®)
8U,, = féu (6)

Continuity is enforced through the boundary conditions on the radial deformations and their spatial derivatives as
given in Equation (7).

Hlx = u”|x+2nRt umlx = u,"|x+2nR (7)

The stiffness equation for each segment is then simplified to Equation (8).
ElW"' + GAU + ku=f ®

To reduce the required notation, the sixphysical properties (£, I, G, 4, x, and R) are grouped into three tire stiffhess
parameters (y,, ysand y,) as defined in Table 1. The tire stiffness parameters are invariant for a specific tire and
positive valued foralltires. Mostnotably thetire stiffness parameters are nota function ofthe discretization process.

ulx = u|x+277.'Ri ullx = u,|x+2nR’ u
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Table 1. Tire stiffness parameters and discretized radial force

¥, = EI(2nR)~3 Distributed bending stiffness

¥s = GA(2rR)™* | Distributedshearstiffness

¥, = k(2nR) Distributed radial stiffness

. th .+
F = % @2rR) Radial force on n” tire segment

The stiffness equation for each segment is then rewritten as Equation (9).

¥, 2R U +y,2rR)" +y,2rR) tu=f 9)

Defining Stiffness and Shape Parameters

Next the model is discretized into N equal segments via a finite difference method. The fourth spatial derivative of
the radial dis placement for the n™ tire segment is approximated by Equation (10); the second spatial derivative is found
in a similar manner.

Un—2— 4'un—l + 6un - 4un+1 tTUpgo
(271R)4
N

A second set of parameters is introduced to simplify the subsequent analysis, beginning with discretizing the
continuous stiffness equation given in Equation (9). The discrete stiffness equation forthe n” tire segment is expressed

as Equation (11), where the radial force on the n” tire segment, F,, is defined in Table 1.
kottaun o +koayup 1 +koty +koayng + ko@oup,, = F, (11

The modelsstiffness (ko) and shape parameters (o; and ) are defined in terms ofthetire stiffness parameters of Table
1. For convenience, the conversionbetweensets of parameters is defined by a pair of trans formation matrices given
in Equation (12) and Equation (13).

"o
u, =

(10)

[ 19
nl [0 0 W[ ko
Y2 =| 1 4 | k0a1 (12)
vl 10 % %k
3 N N 02
lN 2N 2NJ
1
kko 6N3 —2N m 14}
Qa =
Lol |- N o y; (13)
072 N3 0 0

The usefulness of the tire stiffness parameters, {3}, is that they are convenient to describe the distributed stiffhess
equation, Equation (9), and they are notaffected by the number oftire segments chosen to discretize the system. The
model stiffness and shape parameters (ko, i, o), by contrast, are convenient for the discretized stiffness equation,
Equation (11), with which the reminder ofthis workis concerned. Considera typicalmodelingexercise in which the
number of segments is to beincreased. Once the modelstiffness and shapeparameters are identified for a model with
the original number of segments, the corresponding invariant tire stiffness parameters, {7}, can be calculated using
Equation (12). If a new number of segments is desired, the corresponding values for the new model stiffness and
shape parameters is calculated using Equation (13) and the invarianttire stiffness parameters.

Parameterized Stiffness Matrix

The symmetry ofa physical tire, enforced by Equation (7), results in a circulant Toeplitzstiffness matrix [ K], as shown
in Equation (14), that comprises two parts: the single parameter k , defines the model stiffness and the model shape
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matrix [a] (defined by the two model shape parameters a; and a) that defines the relative deformations of the tire
when acted upon by geometric constraints.

[ 1 a a, 0 - a, 1]
lar 1 a; 0
a, a; 1 a ¢ 0 O
[K] = ko z ! ! 0 0 = ko[a] (14)

0 a, a; 1
lay, @, 0 0 ~ a 1]
DEVELOPMENT OF CONSTRAINT MODES

The Guyan static reductionmethod [17] is used to reduce the order ofthe stiffness matrix in Equations (15)-(18) by
imposing geometric boundary constraints on the active degrees of freedom. The degrees of freedom, defined as the
radial deformations ofthe tire {u}, are categorized into activeand omitted sets, represented by superscripts ‘a’and ‘o’
respectively. In general, the geometric boundary constraints mustbe a subsetofthe active degrees of freedom. In the
tire modeling case with which this work is concerned, theactive constraints are exclusively comprised of those degrees
of freedomin contact with the road surface. Thedegrees of freedomare reordered and written as vector {11} such that
the active degrees of freedomoccupy thefirst positions in the vector, followed by the omitted degrees of freedom, via
an orthogonal sorting matrix, S, as shown in Equation (15).

u® 1 re
=05 1°N{i] = 9@, @-= 157w (15)
The stiffness matrix and the force vector must be similarly reordered as given in Equation (16).
[K] = [SI"[KILS], {F}=[S]"{F} (16)
The reordered stiffness equation is then partitioned according to the active and omitted degrees of freedomas given
in Equation (17).
S1or _ | (K] [K*] {{ﬁ“}} FN_ (s
K{{ul=1|"~ ~ o (= =1F 17
[ ]{ } [[Koa] [KOO] {uo} {0} { } ( )

Given a set ofactive constraints, {1i%}, the omitted constraint vector {#°} is written as Equation (18). The constraint
mode for this particular set ofactive constraints is written as Equation (20).

{ﬁo} - _ [Roo] -1 [Roa]{ﬁa} (1 8)

In this work, the stiffness matrix is defined in terms of an overall stiffness parameter and two shape parameters, as
developedin Equation (14). The reordered stiffness submatrices are then given by Equation (19) as

[K°°] =[S°1T (ko[aD[S°]and [K°%] = [S°TT (ko [aD)[S%] (19)

The omitted constraint vector becomes solely dependent on the shape parameters and theactive constraint vectos as
developedin Equation (20).

{w} = —(s°T"[alls°D (ST [al[$*D{a*} (20)
Finally, the complete displacement vector is written as a function ofthe active constraint vector in Equation (21).
fu} = [[591 - [s°1(s°T [d[s°D) (5] [alls*D @} @)

Note that this mode shape is completely independent of the overall tire stiffness and the forces acting on the tire.
Rather, the shapeis purely a function ofthe geometric boundary conditions (captured by the active constraint vector,
{©1%}, and the corresponding orthogonal sorting matrix, [S]) and the two shape parameters a; and a. The issue then,
is to deduce theactive constraints.
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Deducing Active Constraints

Whether a new active constraint must be added and, if so, which active constraint must be added is based on the
impingement of the road surface on the tire surface. It is tempting to simply compare the relative positions of the
undeformed shape of the tire and the road surface and sort the points by the magnitude of impingement. Howeves
one pointalongthe road surface may impinge farther into the undeformed tire’s periphery than another, yet the former
point may not be an active constraint while the later point is. This is demonstrated by the example in Figure 2. The
undeformedtire (shown as a dashed line in Figure 2a) is impinged uponby three distinct points along the road s urface
(shown as asolid line). The points are labeled in Figure 2b according to their magnitude of impingement, frommost
to least,as A, B,and C. Althoughtheimpingement by pointBis greater than that ofpoint C, it should notbeidentified
as an active constraint lest the unidirectional boundary condition be violated and the road is presumed to “pull” the
tire down. In this way the process cannot be based on a Lagrangian formulation, since that assumes some a priori

knowledge of which degrees of freedom are active, and thus motivates the development of a recursive process for
adding active constraints.

Figure 2. Deducing Active Constraints

Although the recursive process to identify the active constraints at the tire-road interface developed in this study i
applicable to a wide range of tire models, including FE models and ring models, it is described herein for the tire
model defined by Equation (20), and shown schematically in Figure 1. The first trial constraint mode is the
undeformed shape of the tire (a circle, partly shown as a dashed line in Figure 3a), located at a prescribed vertical
positionabovethe roadsurface. The recursive process continues through steps a throughe as follows:
a. Identify the setof degrees of freedomwhere the road surface impinges onthe current trial constraint
mode.
b. Sortthe degreesoffreedomwith respect to the magnitude of impingement.
c. Endtheiteration process if no significantimpingementexists.
d. Augmentthe current set of active degrees of freedomwith the degree of freedomthat has the
greatest impingement (and those that impinge within some very smalltolerance of that greatest
impingement, if applicable).
e. Developanewtrial constraint mode based on this augmented set ofactive constraints.

For clarity, the set ofactive constraints at the tire-road interface is developed through a typical example. Considera
tire on a flat plate as shown in Figure 3 where the road, undeformed shape of the tire, and the deformed shape (the
trial constraint mode) are shownas a solid, dashed, and dotted line respectively. The undeformed tire is the first trial
constraint mode, shown in Figure 3a. The tire segment with the largest impingementis directly below the tire center
and becomes thefirst active degree of freedom. Figure 3b shows the second trial constraintmode and the first active
degree of freedomis shown as a single small circle. Figure 3c shows that two degrees of freedom have the same
impingement (due to symmetry) and both are added to the set ofactive constraints and a new trial constraint mode is
calculated. This process ends with Figure 3d when no significantimpingementremains.

) s ~, ~, ra N
\ \ , N K
~ ’ . o rd s o™ "~ d
~= = <TTOrT e —Uegeees—

a b

le]
o,

Figure 3. Recursive process to identify active constraints

Nonlinearity from Unidirectional Geometric Boundary Condition

It is clear that the stiffness equation, developed as Equation (8) for the continuous case and Equation (11) for the
discrete case, are linear and time invariant as are the physical properties shown in Table 1. Howeverrealtires exhibit
a nonlinear vertical force-deflection behavior that must be captured. The unidirectional geometric boundary
conditions provide the mechanism by which this non-linear stiffness relationship is manifest. As the tire deflection
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increases, more tire segments come into contact with the road surface and become active constraints as shown in
Figure 4. As the tire first touches theroad surface, only two segments are activeand produce forces, shown as arrows
in Figure 4a. As the deflectionincreases, the magnitude ofthe forces at the existing active constraints increases and
additional degrees of freedom become active, as shown by the four arrows in Figure 4b. This addition of new
constraints and the increase force magnitude continues with increased deflection (shown in Figure 4c).

[ + b + . + !

\ / \ /

\ 7 \
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Figure 4. Additional radial forces added as deflection increases

EXPERIMENTAL VALIDATION

The experimental data used to validate this work is provided by Professor Schalk Els of the University of Pretora,
South Africa. The tire used is a Continental Conti-Trac AT 238/85R16. Two quasi-static tests (a flat plate test and a
cleat test) are performed that produce a resultant spindle force, F, with respect to the tire deflection, e, as shown n
Figure 5a for the flat plate test and Figure 5b forthe cleat test. The side length ofthe square cleatis 19 mm. In both
cases an obstruction (plate or cleat) is gradually pressedtoward the center ofa tire that is rigidly fixed at the spindle.
The modelstiffness, ko, and model shape parameters, o; and o, are identified using these two quasi-static tests. The
flat plate test results are compared to the results fromRagheb, El-Gindy, and Kishawy [7]. Theresults ofthese two
tests are shown in Figure 6 and Figure 7; in both figures the experimental results are shown as a solid line while the
simulation results are shown as a dashed line.

M—Je

= = 3

[
—> =
\\\ \
a. Flat Plate b. Cleat

Figure 5. Schematics for Test Procedures

Validation via Flat Plate Testing

It is clear from Figure 6 that the nonlinear stiffening characteristic ofthe tire is capturedby the constraint mode tire
model via the unidirectional geometric boundary condition (see also Figure 4). The model parameters were optimized
to minimize the maximum error, in this case 4%, throughout a reasonably large range of travel. For comparison
purposes, Ragheb, ElI-Gindy, and Kishawy [7] used Mooney-Rivlin material properties to create detailed FE models
of'the tread and sidewall for a tire similar to the Michelin Off-road 12.00R20 XMLTL 149J (a somewhat larger tie
than thatused in the present study). The FE model produced quasi-static flat-plate test results that were within 10-
15% of the experimental results (depending on tire pressure). Also ofnote is that the nonlinearity in their simulation
was negligible whereas the current study produces results that are clearly, though not dramatically, nonlinear.
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Figure 6: Flat-plate experimental and simulated force, F, with respect to the deflection, e

In this example, the shear and radial stiffnesses are orders of magnitude smaller than the bending stiffness. To simplify
future comparisons to theseresults, the model shape and stiffness parameters and tire stiffness parameters provided in
Table 2 may beused.

Table 2. Simplified tire stiffness parameters and modeling parameters

Modeling Tire Stiffness Parameters
Parameters (N=72)
k,=7.053 x 10° y; =3.15
a,=-2/3 y, =0
a,=1/6 y; =0

Validation via Cleat Testing

The cleat test simulation results shown in Figure 7 show very good agreement throughout the range of deflection; the
maximum error is 7%. The nonlinear stiffness property, in the form of a discontinuity, is clearly captured in this
modeling technique. The discontinuity in stiffness occurs when the experimental deflection exceeds approximately
Scm, dividing the results into two regions. In the lowerregion the tire is suspended by the cleat and the contact area
is constrained tothe cleatsurfaceonly. In this lowerregionthestiffness is quitelinear in both the experimental results
and the simulatedresults. This is expected because there are no additional unidirectional boundary constraints added
as the deflection increases in this lowerregion. There is a dramatic change in the stiffness as deflection increases to
the point wherethetire tread touches the surfacebelow the cleatas shown in the lower inset picture in Figure 7. Note

that this discontinuity in stiffness is captured by the constraint mode tire model even though a simple linear model i
used to predict the radial deflection ofthe tire surface.
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Figure 7: Cleat experimental and simulated force, F, with respect to the deflection, e

DISCUSSION

It is envisioned that the constraint mode tire model developed in this work can serve as a morphological filter. That
is, this constraint mode tire model can be used to pre-filter the surface once, providing the required bridging and
enveloping properties ofthe tire. A simpler tire model (perhaps a simple linear point-follower) could be used in the
iterative design process to provide fast yet reliable spindle force predictions for vehicle dynamic simulation and
reliability evaluation. Specifically, an effective road profile could be estimated given an actual profile by simulating
the constraint mode tire model traveling over an actual profile given a constant spindle load. Itis hoped that a small
sacrifice in accuracy willresult in an order of magnitudeincrease in computational speed. Preliminary results shown
in Figure 8 where the actual profile is shown as a solid grey line and the effective road profile is shown as a dashed
black line. In this example both the bridging and enveoloping proerties are evident (including the bridging of deep
narrow cracks ) which is encouraging for furtherstudy.
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Figure 8: Potential use as Morphological Pre-Filter

CONCLUSIONS

The main contribution ofthis workis the development ofa computationally efficient, linear, planar, quasi-static tire
model that accurately predicts a tire’s lower-frequency, reasonably large amplitude, nonlinear stiffness relationship.
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One major developmentis that themodelis parameterized by a single stiffness parameter and two shape parameters.
The implication of this development is that the tire’s deformed shape is completely independent of the overall tire
stiffness and the forces acting onthetire. Rather, the shape is purely a function ofthe geometric boundary conditions
and the two shape parameters «; and .. This simple model produces nonlinear stiffness when simulating a flat plate
testand a discontinuous stiffness when simulating a cleat test, in both cases producing reasonable force predictions.
The nonlinear behavior stems from the unidirectional geometric boundary conditions that are preserved during the
recursive method developed to deducethe active constraints. A simple example demonstrates thatsimpler algorithns
that do notusethis new recursive method can erroneously define non-active constraints to beactive. This may produce
the effect oftheroad surface “pulling” thetire down. This modelstrikes a balance between heuristic tire models (such
as a linear point-follower) thatlack the fidelity to make accurate chassis load predictions and computationally intensive
models that cannot provide timely predictions. It is hoped that this tire model is used as an integral part of
computationally efficient and accurate vehicle dynamic simulations that are critical throughout the iterative design
process.
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